A Tutte polynomial inequality for lattice path matroids
نویسندگان
چکیده
Let M be a matroid without loops or coloops and let TM be its Tutte polynomial. In 1999 Merino and Welsh conjectured that max(TM (2, 0), TM (0, 2)) ≥ TM (1, 1) for graphic matroids. Ten years later, Conde and Merino proposed a multiplicative version of the conjecture which implies the original one. In this paper we show the validity of the multiplicative conjecture when M is a lattice path matroid. In order to do this, we introduce and study a particular class of lattice path matroids, called snakes. We present a characterization showing that snakes are the only graphic lattice path matroids and provide explicit formulas for the number of trees, acyclic orientations and totally cyclic orientations in this case. Snakes are used as building bricks to establish a stronger inequality implying the above multiplicative conjecture as well as to characterize the cases in which equality holds.
منابع مشابه
Lattice path matroids: enumerative aspects and Tutte polynomials
Fix two lattice paths P and Q from ð0; 0Þ to ðm; rÞ that use East and North steps with P never going above Q: We show that the lattice paths that go from ð0; 0Þ to ðm; rÞ and that remain in the region bounded by P and Q can be identified with the bases of a particular type of transversal matroid, which we call a lattice path matroid. We consider a variety of enumerative aspects of these matroid...
متن کاملAn Introduction to Transversal Matroids
1. Prefatory Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Several Perspectives on Transversal Matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1. Set systems, transversals, partial transversals, and Hall’s theorem . . . . . . . . 2 2.2. Transversal matroids via matrix encodings of set systems . . . . . ....
متن کاملar X iv : m at h / 04 10 42 5 v 1 [ m at h . C O ] 1 9 O ct 2 00 4 MULTI - PATH MATROIDS
We introduce the minor-closed, dual-closed class of multi-path matroids. We give a polynomial-time algorithm for computing the Tutte polynomial of a multi-path matroid, we describe their basis activities, and we prove some basic structural properties. Key elements of this work are two complementary perspectives we develop for these matroids: on the one hand, multi-path matroids are transversal ...
متن کاملar X iv : m at h . C O / 0 41 04 25 v 1 1 9 O ct 2 00 4 MULTI - PATH MATROIDS
We introduce the minor-closed, dual-closed class of multi-path matroids. We give a polynomial-time algorithm for computing the Tutte polynomial of a multi-path matroid, we describe their basis activities, and we prove some basic structural properties. Key elements of this work are two complementary perspectives we develop for these matroids: on the one hand, multi-path matroids are transversal ...
متن کاملComputing the Tutte polynomial of lattice path matroids using determinantal circuits
We give a quantum-inspired Opnq algorithm computing the Tutte polynomial of a lattice path matroid, where n is the size of the ground set of the matroid. Furthermore, this can be improved to Opnq arithmetic operations if we evaluate the Tutte polynomial on a given input, fixing the values of the variables. The best existing algorithm, found in 2004, was Opnq, and the problem has only been known...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1510.00600 شماره
صفحات -
تاریخ انتشار 2015